Cadre : A un anneau commutatif unitaire, \mathbb{K} un corps.

I Notion de principalité

1) Idéaux

Définition 1. Un idéal I de A es un sous-groupe de (A, +) tel que pour tout $i \in I$ et tout $a \in A$, $ai \in I$.

Définition 2. Un idéal I de A est dit principal s'il est monogène, i.e. engendré par un élément $x \in A$. On note I = (x) = xA.

Exemple 3. Tout idéal de \mathbb{Z} ou $\mathbb{Z}/p\mathbb{Z}$ pour p premier est principal.

Exemple 4. Dans $\mathbb{Z}[X]$, (2, X) n'est pas principal

Définition 5. Un idéal I de A est dit premier si $A \neq I$ et pour tous $a, b \in A, ab \in I \Rightarrow a \in I$ ou $b \in I$.

Proposition 6. I est idéal premier si, et seulement si, A/I est intègre.

Exemple 7. L'idéal $n\mathbb{Z}$ de \mathbb{Z} est premier ssi n = 0 ou n est premier.

Définition 8. Un idéal I de A est dit maximal si $A \neq I$ et pour tout J idéal de A, $I \subset J \subset A \Rightarrow J = I$ ou J = A.

Proposition 9. I est idéal maximal si, et seulement si, A/I est un corps.

Exemple 10. Les idéaux maximaux de \mathbb{Z} sont les $p\mathbb{Z}$ pour p premier.

Remarque 11. Tout idéal maximal est premier. La réciproque est fausse. En effet, dans $\mathbb{Z}[X]$, (X) est premier, mais non maximal $(\mathbb{Z}[X]/(X) \cong \mathbb{Z}$ est intègre mais ce n'est pas un corps).

2) Anneaux principaux

Définition 12. Un anneau est dit principal s'il est intègre et si tous ses idéaux sont principaux.

Exemple 13. L'anneau \mathbb{Z} est principal, ainsi que $\mathbb{K}[X]$, mais pas $\mathbb{Z}[X]$. $\mathbb{Z}/n\mathbb{Z}$ est principal si, et seulement si, n est premier.

Application 14. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $u \in \mathcal{L}(E)$. On note ϕ_u l'évaluation en u. L'anneau $\mathbb{K}[X]$ étant principal, $\operatorname{Ker} \phi_u$ est monogène. On appelle polynôme minimal de u l'unique générateur unitaire de $\operatorname{Ker} \phi_u$.

Application 15. Soit $\mathbb{K} \subset \mathbb{L}$ une extension de corps, et soit $\alpha \in \mathbb{L}$ algébrique sur \mathbb{K} . Un même raisonnement avec l'évaluation des polynômes en α donne l'existence du polynôme minimal en α .

Définition 16. Soit $p \in A$, p est dit irréductible si $p \notin A^{\times}$ et si $p = ab \Rightarrow a \in A^{\times}$ ou $b \in A^{\times}$.

Exemple 17. Les irréductibles de \mathbb{Z} sont les nombres premiers.

Proposition 18. Si A est principal, alors:

p est $irréductible \Leftrightarrow (p)$ est $premier \Leftrightarrow (p)$ est maximal

Proposition 19. Si A est un corps, alors A[X] est principal.

3) Cas des anneaux euclidiens

Définition 20. Un stathme d'un anneau intègre est une application $\nu: A \setminus \{0\} \to \mathbb{N}$ telle que pour tous $a, b \in A \setminus \{0\}$, il existe $q, r \in A$ avec a = bq + r et $(r = 0 \text{ ou } \nu(r) < \nu(b))$.

Un anneau intègre possédant un stathme est dit euclidien.

Exemple 21. \mathbb{Z} muni de la valeur absolue est euclidien.

Théorème 22. Un anneau euclidien est principal.

Proposition 23. Soit $P \in A[X] \setminus \{0\}$ de coefficient dominant inversible, et $F \in A[X]$. Alors il existe $Q, R \in A[X]$ tels que F = PQ + R et (R = 0) ou deg $R < \deg P$.

Corollaire 24. Si \mathbb{K} est un corps, alors $\mathbb{K}[X]$ est euclidien.

Proposition 25. A corps $\Leftrightarrow A[X]$ euclidien $\Leftrightarrow A[X]$ principal

Exemple 26. $\mathbb{Z}[i] = \{z = a + ib \in \mathbb{C} \mid a, b \in \mathbb{Z}\}$ est un anneau euclidien.

Lemme 27. Soit A un anneau euclidien. Il existe $x \in A \setminus A^{\times}$ tel que la restriction à $A^{\times} \cup \{0\}$ de la projection canonique de A sur A/(x) soit surjective.

Exemple 28. L'anneau $\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ est principal et non-euclidien.

II Arithmétique et anneaux principaux

1) Divisibilité

Définition 29. Soient $a, b \in A$. On dit que a divise b, noté a|b, s'il existe $c \in A$ tel que b = ac.

Remarque 30. $a|b \Leftrightarrow (b) \subseteq (a)$

Définition 31. a et b sont dits associés si (a) = (b).

Proposition 32. Si A est intègre, a et b sont associés si, et seulement si, il existe $u \in A^{\times}$ tel que b = au.

Définition 33. On dit que a et b sont premiers entre eux, noté $a \wedge b = 1$, si $(d|a| et d|b) \Rightarrow d \in A^{\times}$.

Définition 34. $p \in A \setminus \{0\}$ est premier si $p \notin A^{\times}$ et si $p|ab \Rightarrow p|a$ ou p|b.

Définition 35. Si A est principal, pour $a, b \in A$, on pose :

- (i) $\operatorname{pgcd}(a,b)$ tout générateur de l'idéal $((a) \cup (b))$.
- (ii) ppcm(a, b) tout générateur de l'idéal $(a) \cap (b)$

On note $pgcd(a, b) = a \wedge b$ et $ppcm(a, b) = a \vee b$.

Exemple 36. Dans $\mathbb{Z}[i\sqrt{5}]$, 3 et $2 + i\sqrt{5}$ n'ont pas de ppcm, et 9 et $6 + 3i\sqrt{5}$ n'ont pas de pgcd.

Théorème 37 (Bézout). Soit A principal, alors pour tous $a, b \in A \setminus \{0\}$, il existe $\lambda, \mu \in A$ tels que $\lambda a + \mu b = a \wedge b$.

Lemme 38 (Gauss). Si a|bc et $a \wedge b = 1$, alors a|c.

Lemme 39 (Euclide). Soit $p \in A$ irréductible, et soit $a, b \in A$, alors $p|ab \Rightarrow p|a$ ou p|b.

Proposition 40. Si A est principal, et $a, b, c, d \in A$, alors:

- (i) $(a|c \ et \ b|c) \Leftrightarrow a \lor b|c$
- (ii) $(d|a \ et \ d|b) \Leftrightarrow d|a \wedge b$

Proposition 41. Les éléments iréductibles d'un anneau principal sont exactement les éléments premiers.

2) Factorialité

On suppose que A est intègre.

Définition 42. On appelle système de représentants des irréductibles de A un ensemble P d'irréductibles tel que tout irréductible de A admette un unique associé dans P.

Exemple 43. Les nombres premiers sont un système de représentants des irréductibles de \mathbb{Z} .

Définition 44. Un anneau A est dit factoriel si tout $a \in A \setminus \{0\}$ se décompose sous la forme $a = u \prod_{p \in P} p^{v_p(a)}$ où $u \in A^{\times}$, $v_p(a) \in \mathbb{N}$ presque tous nuls et P un système de représentants des irréductibles.

Exemple 45. \mathbb{Z} est factoriel, $\mathbb{Z}[i\sqrt{5}]$ ne l'est pas.

Proposition 46. Tout anneau principal est factoriel.

Proposition 47. Dans un anneau factoriel, les pgcd et ppcm existent.

3) Théorème des restes chinois

Lemme 48. Soient I et J des idéaux de A tels que A=(I,J). On a alors $A/(IJ) \cong A/I \times A/J$.

Corollaire 49. Soit A un anneau principal, et soient $a_1, \ldots, a_n \in A \setminus \{0\}$ non-inversibles et premiers entre eux deux à deux. Alors $A/(a_1 \ldots a_n)$ est isomorphe à $A/(a_1) \times \ldots \times A/(a_n)$.

Application 50.
$$\begin{cases} x & \equiv 2 & [4] \\ x & \equiv 3 & [5] \\ x & \equiv 1 & [9] \end{cases} \Leftrightarrow x = 118 + 180k \ pour \ k \in \mathbb{Z}.$$

III Entiers de corps quadratiques

1) Généralités

Définition 51. Soit $d \in \mathbb{Z} \setminus \{0, 1\}$ et sans facteur carré, et soit \sqrt{d} une racine carrée de d dans \mathbb{C} . $\mathbb{Q}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Q}\}$ est un sous-corps de \mathbb{C} , appelé corps quadratique. On note $\mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} \mid a, b \in \mathbb{Z}\}$. C'est un sous-anneau de $\mathbb{Q}[\sqrt{d}]$.

Définition 52. Soit $z = a + b\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$. On définit :

- (i) son conjugué par $\overline{z} = a b\sqrt{d}$.
- (ii) sa trace par $tr(z) = z + \overline{z} = 2a$.
- (iii) sa norme par $N(z) = z\overline{z} = a^2 db^2$.

Définition 53. On dit que $z = a + b\sqrt{d}$ est un entier de $\mathbb{Q}[\sqrt{d}]$ si a et b sont des entiers. On note A_d l'ensemble des entiers de $\mathbb{Q}[\sqrt{d}]$.

Définition 54. z est entier si, et seulement si, tr(z) et N(z) sont entiers.

Proposition 55. A_d est un anneau intègre.

Théorème 56.
$$A_d = \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$$
 si $d \equiv 1[4]$. $A_d = \mathbb{Z}[\sqrt{d}]$ si $d \equiv 2[4]$ ou $d \equiv 3[4]$.

2) L'anneau $\mathbb{Z}[i]$ des entiers de Gauss

Proposition 57. $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$

Proposition 58. $\mathbb{Z}[i]$ est un anneau euclidien.

Définition 59. On note $\Sigma = \{n = a^2 + b^2 \mid a, b \in \mathbb{N}\}.$

Lemme 60. Soit p premier impair. Alors $p \in \Sigma$ si, et seulement si, p est réductible dans $\mathbb{Z}[i]$.

Lemme 61. Σ est stable par multiplication.

Théorème 62. Soit p premier impair. Alors $p \in \Sigma$ ssi $p \equiv 1[4]$.

Corollaire 63 (Théorème des deux carrés). Soit $n \in \mathbb{N}*$. On le décompose en produit de facteurs premiers : $n = \prod_{p \in \mathbb{P}} p^{v_p n}$. Alors :

$$n \in \Sigma \Leftrightarrow (\forall p \in \mathbb{P}, p \equiv 3[4] \Rightarrow v_p(n) \equiv 0[2])$$

IV Irréductibilité des polynômes de $\mathbb{Z}[X]$

On suppose que A est factoriel. On considère $\mathbb{K} = \operatorname{Frac}(A)$.

Définition 64. Soit $P \in A[X]$ non nul. On appelle contenu de P, noté c(P), le pgcd des coefficients de P. Si c(P) = 1, on dit que P est primitif.

Lemme 65. Le produit de deux polynômes primitifs est primitif.

Lemme 66. Pour $P, Q \in A[X]$, on a c(PQ) = c(P)c(Q).

Théorème 67. Soit $P \in A[X]$ non constant. Alors P est irréductible dans A[X] si, et seulement si, il est primitif et irréductible dans $\mathbb{K}[X]$.

Théorème 68 (Eisenstein). Soit $P(X) = \sum_{k=1}^{n} a_k X^k \in A[X]$ non constant. On suppose qu'il existe $p \in A$ irréductible divisant tous les a_k sauf a_n et tel que p^2 ne divise pas a_0 . Alors P est irréductible dans $\mathbb{K}[X]$.

Application 69. Si p est premier, $\sum_{k=0}^{p-1} X^k$ est irréductible dans $\mathbb{Z}[X]$.

Développements

- Théorème des deux carrés (57,58,60,61,62,63) [Per96]
- Critère d'Eisenstein (65,66,67,68) [FGN13a]

Références

[Com98] F. Combes. Algèbre et géométrie. Bréal

[Gou94] X. Gourdon. Les Maths en Tête: Algèbre. Ellipses, 2e édition

[Per96] D. Perrin. Cours d'Algèbre. Ellipses

[FGN13a] S. Francinou, H. Gianella, et S. Nicolas. Oraux X-ENS Algèbre 1. Cassini